MixMAP: An R Package for Mixed Modeling of Meta-Analysis $p$ Values in Genetic Association Studies
View Researcher's Other CodesDisclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).
Authors | Gregory J. Matthews, Andrea S. Foulkes |
Journal/Conference Name | JOURNAL OF STATISTICAL SOFTWARE |
Paper Category | Other |
Paper Abstract | Genetic association studies are commonly conducted to identify genes that explain the variability in a measured trait (e.g., disease status or disease progression). Often, results of these studies are summarized in the form of a p value corresponding to a test of association between each single nucleotide polymorphisms (SNPs) and the trait under study. As genes are comprised of multiple SNPs, post hoc approaches are generally applied to determine gene-level association. For example, if any SNP within a gene is significantly associated with the trait at a genome-wide significance level (p |
Date of publication | 2015 |
Code Programming Language | R |
Comment |