Model-based Boosting in R: A Hands-on Tutorial Using the R Package mboost

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Benjamin Hofner, Andreas Mayr, Nikolay Robinzonov, Matthias Schmid
Journal/Conference Name Computational Statistics
Paper Category
Paper Abstract We provide a detailed hands-on tutorial for the R add-on package mboost. The package implements boosting for optimizing general risk functions utilizing component-wise (penalized) least squares estimates as base-learners for fitting various kinds of generalized linear and generalized additive models to potentially high-dimensional data. We give a theoretical background and demonstrate how mboost can be used to fit interpretable models of different complexity. As an example we use mboost to predict the body fat based on anthropometric measurements throughout the tutorial.
Date of publication 2014
Code Programming Language R

Copyright Researcher 2021