ModelicaGym: Applying Reinforcement Learning to Modelica Models

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Tetiana Bogodorova, Oleh Lukianykhin
Journal/Conference Name ACM International Conference Proceeding Series
Paper Category
Paper Abstract This paper presents ModelicaGym toolbox that was developed to employ Reinforcement Learning (RL) for solving optimization and control tasks in Modelica models. The developed tool allows connecting models using Functional Mock-up Interface (FMI) toOpenAI Gym toolkit in order to exploit Modelica equation-based modelling and co-simulation together with RL algorithms as a functionality of the tools correspondingly. Thus, ModelicaGym facilitates fast and convenient development of RL algorithms and their comparison when solving optimal control problem for Modelicadynamic models. Inheritance structure ofModelicaGymtoolbox's classes and the implemented methods are discussed in details. The toolbox functionality validation is performed on Cart-Pole balancing problem. This includes physical system model description and its integration using the toolbox, experiments on selection and influence of the model parameters (i.e. force magnitude, Cart-pole mass ratio, reward ratio, and simulation time step) on the learning process of Q-learning algorithm supported with the discussion of the simulation results.
Date of publication 2019
Code Programming Language Python

Copyright Researcher 2022