Modeling Discrete Interventional Data using Directed Cyclic Graphical Models

View Researcher II's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Mark W. Schmidt, Kevin P. Murphy
Journal/Conference Name Uncertainty in Artificial Intelligence
Paper Category
Paper Abstract We outline a representation for discrete multivariate distributions in terms of interventional potential functions that are globally normalized. This representation can be used to model the effects of interventions, and the independence properties encoded in this model can be represented as a directed graph that allows cycles. In addition to discussing inference and sampling with this representation, we give an exponential family parametrization that allows parameter estimation to be stated as a convex optimization problem; we also give a convex relaxation of the task of simultaneous parameter and structure learning using group l1-regularization. The model is evaluated on simulated data and intracellular flow cytometry data.
Date of publication 2009
Code Programming Language MATLAB
Comment

Copyright Researcher II 2021