Modeling the influence of raindrop size on the wash-off losses of copper-based fungicides sprayed on potato (Solanum tuberosum L.) leaves

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Paula Pérez-Rodríguez , Marcos Paradelo , Isabel Rodríguez-Salgado , David Fernández-Calviño & José Eugenio López-Periago
Journal/Conference Name Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes
Paper Category
Paper Abstract Modeling the pesticide wash-off by raindrops is important for predicting pesticide losses and the subsequent transport of pesticides to soil and in soil run-off. Three foliar-applied copper-based fungicide formulations, specifically the Bordeaux mixture (BM), copper oxychloride (CO), and a mixture of copper oxychloride and propylene glycol (CO-PG), were tested on potato (Solanum tuberosum L.) leaves using a laboratory raindrop simulator. The losses in the wash-off were quantified as both copper in-solution loss and copper as particles detached by the raindrops. The efficiency of the raindrop impact on the wash-off was modeled using a stochastic model based on the pesticide release by raindrops. In addition, the influence of the raindrop size, drop falling height, and fungicide dose was analyzed using a full factorial experimental design. The average losses per dose after 14 mm of dripped water for a crop with a leaf area index equal to 1 were 0.08 kg Cu ha−1 (BM), 0.3 kg Cu ha−1 (CO) and 0.47 kg Cu ha−1 (CO-PG). The stochastic model was able to simulate the time course of the wash-off losses and to estimate the losses of both Cu in solution and as particles by the raindrop impacts. For the Cu-oxychloride fungicides, the majority of the Cu was lost as particles that detached from the potato leaves. The percentage of Cu lost increased with the decreasing raindrop size in the three fungicides for the same amount of dripped water. This result suggested that the impact energy is not a limiting factor in the particle detachment rate of high doses. The dosage of the fungicide was the most influential factor in the losses of Cu for the three formulations studied. The results allowed us to quantify the factors that should be considered when estimating the losses by the wash-off of copper-based fungicides and the inputs of copper to the soil by raindrop wash-off.
Date of publication 2013
Code Programming Language FORTRAN
Comment

Copyright Researcher 2021