Monocular Tracking of 3D Human Motion with a Coordinated Mixture of Factor Analyzers

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Rui Li, Ming-Hsuan Yang, Stan Sclaroff, Tai-Peng Tian
Journal/Conference Name ECCV
Paper Category
Paper Abstract Filtering based algorithms have become popular in tracking human body pose. Such algorithms can suffer the curse of dimensionality due to the high dimensionality of the pose state space; therefore, efforts have been dedicated to either smart sampling or reducing the dimensionality of the original pose state space. In this paper, a novel formulation that employs a dimensionality reduced state space for multi-hypothesis tracking is proposed. During off-line training, a mixture of factor analyzers is learned. Each factor analyzer can be thought of as a “local dimensionality reducer” that locally approximates the pose manifold. Global coordination between local factor analyzers is achieved by learning a set of linear mixture functions that enforces agreement between local factor analyzers. The formulation allows easy bidirectional mapping between the original body pose space and the low-dimensional space. During online tracking, the clusters of factor analyzers are utilized in a multiple hypothesis tracking algorithm. Experiments demonstrate that the proposed algorithm tracks 3D body pose efficiently and accurately , even when self-occlusion, motion blur and large limb movements occur. Quantitative comparisons show that the formulation produces more accurate 3D pose estimates over time than those that can be obtained via a number of previously-proposed particle filtering based tracking algorithms.
Date of publication 2006
Code Programming Language MATLAB
Comment

Copyright Researcher 2021