Motion Fused Frames: Data Level Fusion Strategy for Hand Gesture Recognition

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Gerhard Rigoll, Okan Köpüklü, Neslihan Köse
Journal/Conference Name IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
Paper Category
Paper Abstract Acquiring spatio-temporal states of an action is the most crucial step for action classification. In this paper, we propose a data level fusion strategy, Motion Fused Frames (MFFs), designed to fuse motion information into static images as better representatives of spatio-temporal states of an action. MFFs can be used as input to any deep learning architecture with very little modification on the network. We evaluate MFFs on hand gesture recognition tasks using three video datasets - Jester, ChaLearn LAP IsoGD and NVIDIA Dynamic Hand Gesture Datasets - which require capturing long-term temporal relations of hand movements. Our approach obtains very competitive performance on Jester and ChaLearn benchmarks with the classification accuracies of 96.28% and 57.4%, respectively, while achieving state-of-the-art performance with 84.7% accuracy on NVIDIA benchmark.
Date of publication 2018
Code Programming Language Python
Comment

Copyright Researcher 2022