Multi-view Self-Constructing Graph Convolutional Networks with Adaptive Class Weighting Loss for Semantic Segmentation

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Arnt-Børre Salberg, Qinghui Liu, Robert Jenssen, Michael Kampffmeyer
Journal/Conference Name IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
Paper Category
Paper Abstract We propose a novel architecture called the Multi-view Self-Constructing Graph Convolutional Networks (MSCG-Net) for semantic segmentation. Building on the recently proposed Self-Constructing Graph (SCG) module, which makes use of learnable latent variables to self-construct the underlying graphs directly from the input features without relying on manually built prior knowledge graphs, we leverage multiple views in order to explicitly exploit the rotational invariance in airborne images. We further develop an adaptive class weighting loss to address the class imbalance. We demonstrate the effectiveness and flexibility of the proposed method on the Agriculture-Vision challenge dataset and our model achieves very competitive results (0.547 mIoU) with much fewer parameters and at a lower computational cost compared to related pure-CNN based work. Code will be available at
Date of publication 2020
Code Programming Language Python

Copyright Researcher 2022