Multinomial models with linear inequality constraints: Overview and improvements of computational methods for Bayesian inference

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Daniel W Heck, Clintin P. Davis-Stober
Journal/Conference Name Journal of mathematical psychology
Paper Category
Paper Abstract Many psychological theories can be operationalized as linear inequality constraints on the parameters of multinomial distributions (e.g., discrete choice analysis). These constraints can be described in two equivalent ways: Either as the solution set to a system of linear inequalities or as the convex hull of a set of extremal points (vertices). For both representations, we describe a general Gibbs sampler for drawing posterior samples in order to carry out Bayesian analyses. We also summarize alternative sampling methods for estimating Bayes factors for these model representations using the encompassing Bayes factor method. We introduce the R package multinomineq, which provides an easily-accessible interface to a computationally efficient implementation of these techniques.
Date of publication 2018
Code Programming Language R
Comment

Copyright Researcher 2021