Multiple Kernelized Correlation Filters (MKCF) for Extended Object Tracking Using X-Band Marine Radar Data

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Yi Zhou, T. Wang, Ronghua Hu, Hangsheng Su, Yi Liu, Xiaoming Liu, Jidong Suo, H. Snoussi
Journal/Conference Name I
Paper Category
Paper Abstract Conventional tracking filter in marine radar only concerns the position or shape of the object. When the target encounters the clutter interruption or ship occlusion, the tracker is easy to drift away due to the wrong target association. Since in short-range maritime surveillance, the X-band marine radar captures the object in an extended region with varying intensities, in this paper, combining position, shape, and appearance of the target together, multiple kernelized correlation filters (MKCF) are proposed to conduct a single object tracking in the real marine radar. By automatic initializing KCF on a target in different time steps and fusing these multiple KCFs via the maximum likelihood, the proposed tracker implicitly uses multiple instances of the target to improve the robustness of the long-term tracking. Bounding rectangles of the multiple trackers also enhance the reliability of ship segmentation via a voting procedure. In the real ship tracking experiment, the proposed tracker performs favorably against the conventional radar tracker and top-ranked visual tracker in the cases of clutter interruption, ship occlusions, and scale changing. We believe that our proposal sheds light on that the intensity distribution of the extended object could be valuable for target association in marine radar data. To encourage further research, our tracking framework is made open-source.
Date of publication 2019
Code Programming Language Python
Comment

Copyright Researcher 2022