Multispectral Pedestrian Detection via Simultaneous Detection and Segmentation

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Ruofeng Tong, Min Tang, Dan Song, Chengyang Li
Journal/Conference Name British Machine Vision Conference 2018, BMVC 2018
Paper Category
Paper Abstract Multispectral pedestrian detection has attracted increasing attention from the research community due to its crucial competence for many around-the-clock applications (e.g., video surveillance and autonomous driving), especially under insufficient illumination conditions. We create a human baseline over the KAIST dataset and reveal that there is still a large gap between current top detectors and human performance. To narrow this gap, we propose a network fusion architecture, which consists of a multispectral proposal network to generate pedestrian proposals, and a subsequent multispectral classification network to distinguish pedestrian instances from hard negatives. The unified network is learned by jointly optimizing pedestrian detection and semantic segmentation tasks. The final detections are obtained by integrating the outputs from different modalities as well as the two stages. The approach significantly outperforms state-of-the-art methods on the KAIST dataset while remain fast. Additionally, we contribute a sanitized version of training annotations for the KAIST dataset, and examine the effects caused by different kinds of annotation errors. Future research of this problem will benefit from the sanitized version which eliminates the interference of annotation errors.
Date of publication 2018
Code Programming Language Python
Comment

Copyright Researcher 2022