Natural Langevin Dynamics for Neural Networks

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors GaƩtan Marceau-Caron, Yann Ollivier
Journal/Conference Name Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Paper Category
Paper Abstract One way to avoid overfitting in machine learning is to use model parameters distributed according to a Bayesian posterior given the data, rather than the maximum likelihood estimator. Stochastic gradient Langevin dynamics (SGLD) is one algorithm to approximate such Bayesian posteriors for large models and datasets. SGLD is a standard stochastic gradient descent to which is added a controlled amount of noise, specifically scaled so that the parameter converges in law to the posterior distribution [WT11, TTV16]. The posterior predictive distribution can be approximated by an ensemble of samples from the trajectory. Choice of the variance of the noise is known to impact the practical behavior of SGLD for instance, noise should be smaller for sensitive parameter directions. Theoretically, it has been suggested to use the inverse Fisher information matrix of the model as the variance of the noise, since it is also the variance of the Bayesian posterior [PT13, AKW12, GC11]. But the Fisher matrix is costly to compute for large- dimensional models. Here we use the easily computed Fisher matrix approximations for deep neural networks from [MO16, Oll15]. The resulting natural Langevin dynamics combines the advantages of Amari's natural gradient descent and Fisher-preconditioned Langevin dynamics for large neural networks. Small-scale experiments on MNIST show that Fisher matrix preconditioning brings SGLD close to dropout as a regularizing technique.
Date of publication 2017
Code Programming Language Lua
Comment

Copyright Researcher 2022