NE-Table: A Neural key-value table for Named Entities

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Mo Yu, Xiaoxiao Guo, Janarthanan Rajendran, Lazaros Polymenakos, Jatin Ganhotra, Satinder Singh
Journal/Conference Name RANLP 2019 9
Paper Category
Paper Abstract Many Natural Language Processing (NLP) tasks depend on using Named Entities (NEs) that are contained in texts and in external knowledge sources. While this is easy for humans, the present neural methods that rely on learned word embeddings may not perform well for these NLP tasks, especially in the presence of Out-Of-Vocabulary (OOV) or rare NEs. In this paper, we propose a solution for this problem, and present empirical evaluations on: a) a structured Question-Answering task, b) three related Goal-Oriented dialog tasks, and c) a Reading-Comprehension task, which show that the proposed method can be effective in dealing with both in-vocabulary and OOV NEs. We create extended versions of dialog bAbI tasks 1,2 and 4 and OOV versions of the CBT test set available at - https://github.com/IBM/ne-table-datasets.
Date of publication 2018
Code Programming Language Unspecified
Comment

Copyright Researcher 2022