Network 'small-world-ness': A quantitative method for determining canonical network equivalence

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Mark D. Humphries, Kevin Gurney
Journal/Conference Name Proceedings of the Royal Society B: Biological Sciences
Paper Category
Paper Abstract Many technological, biological, social, and information networks fall into the broad class of ‘small-world’ networks they have tightly interconnected clusters of nodes, and a shortest mean path length that is similar to a matched random graph (same number of nodes and edges). This semi-quantitative definition leads to a categorical distinction (‘small/not-small’) rather than a quantitative, continuous grading of networks, and can lead to uncertainty about a network's small-world status. Moreover, systems described by small-world networks are often studied using an equivalent canonical network model – the Watts-Strogatz (WS) model. However, the process of establishing an equivalent WS model is imprecise and there is a pressing need to discover ways in which this equivalence may be quantified.
Date of publication 2008
Code Programming Language Matlab
Comment

Copyright Researcher 2021