Neuron Pruning based Discriminative Extreme Learning Machine for Pattern Classification

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Tan Guo, Lei Zhang, and Xiaoheng Tan
Journal/Conference Name Cognitive Computation
Paper Category
Paper Abstract Extreme learning machine (ELM), as a newly developed learning paradigm for the generalized single hidden layer feedforward neural networks, has been widely studied due to its unique characteristics, i.e., fast training, good generalization, and universal approximation/classification ability. A novel framework of discriminative extreme learning machine (DELM) is developed for pattern classification. In DELM, the margins between different classes are enlarged as much as possible through a technique called e-dragging. DELM is further extended to pruning DELM (P-DELM) using L2,1-norm regularization. The performance of DELM is compared with several state-of-the-art methods on public face databases. The simulation results show the effectiveness of DELM for face recognition when there are posture, facial expression, and illumination variations. P-DELM can distinguish the importance of different hidden neurons and remove the worthless ones. The model can achieve promising performance with fewer hidden neurons and less prediction time on several benchmark datasets. In DELM model, the margins between different classes are enlarged by learning a nonnegative label relaxation matrix. The experiments validate the effectiveness of DELM. Furthermore, DELM is extended to P-DELM based on L2,1-norm regularization. The developed P-DELM can naturally distinguish the importance of different hidden neurons, which will lead to a more compact network by neuron pruning. Experimental validations on some benchmark datasets show the advantages of the proposed P-DELM method.
Date of publication 2017
Code Programming Language MATLAB
Comment

Copyright Researcher 2021