Nitrogen uptake and allocation estimates for Spartina alterniflora and Distichlis spicata

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Troy D. Hill, Nathalie R. Sommer, Caroline R. Kanaskie, Emily A. Santos, Autumn J. Oczkowski
Journal/Conference Name Journal of Experimental Marine Biology and Ecology
Paper Category
Paper Abstract Salt marshes have the potential to intercept nitrogen that could otherwise impact coastal water quality. Salt marsh plants play a central role in nutrient interception by retaining N in above- and belowground tissues. We examine N uptake and allocation in two dominant salt marsh plants, short-form Spartina alterniflora and Distichlis spicata. Nitrogen uptake was measured using 15N tracer experiments conducted over a four-week period, supplemented with stem-level growth rates, primary production, and microbial denitrification assays. By varying experiment duration, we identify the importance of a rarely-measured aspect of experimental design in 15N tracer studies. Experiment duration had a greater impact on quantitative N uptake estimates than primary production or stem-level relative growth rates. Rapid initial scavenging of added 15N caused apparent nitrogen uptake rates to decline by a factor of two as experiment duration increased from one week to one month, although each experiment shared the qualitative conclusion that Distichlis roots scavenged N approximately twice as rapidly as Spartina. We estimate total N uptake into above- and belowground tissues as 154 and 277 mg N·m−2·d−1 for Spartina and Distichlis, respectively. Driving this pattern were higher N content in Distichlis leaves and belowground tissue and strong differences in primary production; Spartina and Distichlis produced 8.8 and 14.7 g biomass·m−2·d−1. Denitrification potentials were similar in sediment associated with both species, but the strong species-specific difference in N uptake suggests that Distichlis-dominated marshes are likely to intercept more N from coastal waters than are short-form Spartina marshes. The data and source code for this manuscript are available as an R package from https//
Date of publication 2018
Code Programming Language R

Copyright Researcher 2022