Nonnegative dictionary learning in the exponential noise model for adaptive music signal representation

View Researcher II's Other Codes

Disclaimer: “The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).”

Please contact us in case of a broken link from here

Authors O. Dikmen & C. FĂ©votte
Journal/Conference Name Advances in Neural Information Processing Systems (NIPS)
Paper Category
Paper Abstract In this paper we describe a maximum likelihood approach for dictionary learning in the multiplicative exponential noise model. This model is prevalent in audio signal processing where it underlies a generative composite model of the power spectrogram. Maximum joint likelihood estimation of the dictionary and expansion coefficients leads to a nonnegative matrix factorization problem where the Itakura-Saito divergence is used. The optimality of this approach is in question because the number of parameters (which include the expansion coefficients) grows with the number of observations. In this paper we describe a variational procedure for optimization of the marginal likelihood, i.e., the likelihood of the dictionary where the activation coefficients have been integrated out (given a specific prior). We compare the output of both maximum joint likelihood estimation (i.e., standard Itakura-Saito NMF) and maximum marginal likelihood estimation (MMLE) on real and synthetical datasets. The MMLE approach is shown to embed automatic model order selection, akin to automatic relevance determination.
Date of publication 2011
Code Programming Language MATLAB

Copyright Researcher II 2021