Nonparametric Stein-type Shrinkage Covariance Matrix Estimators in High-Dimensional Settings

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Anestis Touloumis
Journal/Conference Name Computational Statistics & Data Analysis
Paper Category
Paper Abstract Estimating a covariance matrix is an important task in applications where the number of variables is larger than the number of observations. Shrinkage approaches for estimating a high-dimensional covariance matrix are often employed to circumvent the limitations of the sample covariance matrix. A new family of nonparametric Stein-type shrinkage covariance estimators is proposed whose members are written as a convex linear combination of the sample covariance matrix and of a predefined invertible target matrix. Under the Frobenius norm criterion, the optimal shrinkage intensity that defines the best convex linear combination depends on the unobserved covariance matrix and it must be estimated from the data. A simple but effective estimation process that produces nonparametric and consistent estimators of the optimal shrinkage intensity for three popular target matrices is introduced. In simulations, the proposed Stein-type shrinkage covariance matrix estimator based on a scaled identity matrix appeared to be up to 80% more efficient than existing ones in extreme high-dimensional settings. A colon cancer dataset was analyzed to demonstrate the utility of the proposed estimators. A rule of thumb for adhoc selection among the three commonly used target matrices is recommended.
Date of publication 2015
Code Programming Language R
Comment

Copyright Researcher 2021