Omitted Variables, Countervailing Effects, and the Possibility of Overadjustment

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Kevin Clarke, Brenton Kenkel, M Rosario Rueda
Paper Category
Paper Abstract The effect of conditioning on an additional covariate on confounding bias depends, in part, on covariates that are unobserved. We characterize the conditions under which the interaction between a covariate that is available for conditioning and one that is not can affect bias. When the confounding effects of two covariates, one of which is observed, are countervailing (in opposite directions), conditioning on the observed covariate can increase bias. We demonstrate this possibility analytically, and then show that these conditions are not rare in actual data. We also consider whether balance tests or sensitivity analysis can be used to justify the inclusion of an additional covariate. Our results indicate that neither provide protection against overadjustment.
Date of publication 2018
Code Programming Language R

Copyright Researcher 2022