Optimal stochastic coordinated beamforming for wireless cooperative networks with CSI uncertainty

View Researcher's Other Codes

MATLAB code for the paper: “Optimal Stochastic Coordinated Beamforming for Wireless Cooperative Networks With CSI Uncertainty”.

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Yuanming Shi, Jun Zhang , and Khaled B. Letaief
Journal/Conference Name IEEE Transactions on Signal Processing
Paper Category
Paper Abstract Transmit optimization and resource allocation for wireless cooperative networks with channel state information (CSI) uncertainty are important but challenging problems in terms of both the uncertainty modeling and performance optimization. In this paper, we establish a generic stochastic coordinated beamforming (SCB) framework that provides flexibility in the channel uncertainty modeling, while guaranteeing optimality in the transmission strategies. We adopt a general stochastic model for the CSI uncertainty, which is applicable for various practical scenarios. The SCB problem turns out to be a joint chance constrained program (JCCP) and is known to be highly intractable. In contrast to all of the previous algorithms for JCCP that can only find feasible but sub-optimal solutions, we propose a novel stochastic DC (difference-of-convex) programming algorithm with optimality guarantee, which can serve as the benchmark for evaluating heuristic and sub-optimal algorithms. The key observation is that the highly intractable probability constraint can be equivalently reformulated as a dc constraint. This further enables efficient algorithms to achieve optimality. Simulation results will illustrate the convergence, conservativeness, stability and performance gains of the proposed algorithm.
Date of publication 2015
Code Programming Language MATLAB

Copyright Researcher 2022