Ordered homogeneity pursuit lasso for group variable selection with applications to spectroscopic data

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors You-wu Lin, Nan Xiao, Li-Li Wang, Chuan-Quan Li, Qing-Song Xu
Journal/Conference Name Chemometrics and Intelligent Laboratory Systems
Paper Category
Paper Abstract In high-dimensional data modeling, variable selection methods have been a popular choice to improve the prediction accuracy by effectively selecting the subset of informative variables, and such methods can enhance the model interpretability with sparse representation. In this study, we propose a novel group variable selection method named ordered homogeneity pursuit lasso (OHPL) that takes the homogeneity structure in high-dimensional data into account. OHPL is particularly useful in high-dimensional datasets with strongly correlated variables. We illustrate the approach using three real-world spectroscopic datasets and compare it with four state-of-the-art variable selection methods. The benchmark results on real-world data show that the proposed method is capable of identifying a small number of influential groups and has better prediction performance than its competitors. The OHPL method and the spectroscopic datasets are implemented and included in an R package OHPL available from https://ohpl.io .
Date of publication 2017
Code Programming Language R
Comment

Copyright Researcher 2021