Orthonormal expansion l1-minimization algorithms for compressed sensing

View Researcher II's Other Codes

Disclaimer: “The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).”

Please contact us in case of a broken link from here

Authors Z. Yang, C. Zhang, J. Deng, and W. Lu
Journal/Conference Name IEEE Transactions on Signal Processing
Paper Category
Paper Abstract Compressed sensing aims at reconstructing sparse signals from significantly reduced number of samples, and a popular reconstruction approach is ℓ1-norm minimization. In this correspondence, a method called orthonormal expansion is presented to reformulate the basis pursuit problem for noiseless compressed sensing. Two algorithms are proposed based on convex optimization: one exactly solves the problem and the other is a relaxed version of the first one. The latter can be considered as a modified iterative soft thresholding algorithm and is easy to implement. Numerical simulation shows that, in dealing with noise-free measurements of sparse signals, the relaxed version is accurate, fast and competitive to the recent state-of-the-art algorithms. Its practical application is demonstrated in a more general case where signals of interest are approximately sparse and measurements are contaminated with noise.
Date of publication 2011
Code Programming Language MATLAB
Comment

Copyright Researcher II 2021