OSLNet: Deep Small-Sample Classification with an Orthogonal Softmax Layer

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Xiaoxu Li, Jie Cao, Jingyi Yu, Zhanyu Ma, Jing-Hao Xue, Zheng-Hua Tan, Jun Guo, Dongliang Chang
Journal/Conference Name arXiv preprint
Paper Category
Paper Abstract A deep neural network of multiple nonlinear layers forms a large function space, which can easily lead to overfitting when it encounters small-sample data. To mitigate overfitting in small-sample classification, learning more discriminative features from small-sample data is becoming a new trend. To this end, this paper aims to find a subspace of neural networks that can facilitate a large decision margin. Specifically, we propose the Orthogonal Softmax Layer (OSL), which makes the weight vectors in the classification layer remain orthogonal during both the training and test processes. The Rademacher complexity of a network using the OSL is only $\frac{1}{K}$, where $K$ is the number of classes, of that of a network using the fully connected classification layer, leading to a tighter generalization error bound. Experimental results demonstrate that the proposed OSL has better performance than the methods used for comparison on four small-sample benchmark datasets, as well as its applicability to large-sample datasets. Codes are available at https//github.com/dongliangchang/OSLNet.
Date of publication 2020
Code Programming Language Python
Comment

Copyright Researcher 2022