Performance analysis of mixed-ADC massive MIMO systems over Rician fading channels

View Researcher II's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Jiayi Zhang, Linglong Dai, Ziyan He, Shi Jin, Xu Li
Journal/Conference Name IEEE Journal on Selected Areas in Communications
Paper Category
Paper Abstract The practical deployment of massive multiple-input multiple-output (MIMO) in the future fifth generation (5G) wireless communication systems is challenging due to its high-hardware cost and power consumption. One promising solution to address this challenge is to adopt the low-resolution analog-to-digital converter (ADC) architecture. However, the practical implementation of such architecture is challenging due to the required complex signal processing to compensate the coarse quantization caused by low-resolution ADCs. Therefore, few high-resolution ADCs are reserved in the recently proposed mixed-ADC architecture to enable low-complexity transceiver algorithms. In contrast to previous works over Rayleigh fading channels, we investigate the performance of mixed-ADC massive MIMO systems over the Rician fading channel, which is more general for the 5G scenarios like Internet of Things. Specially, novel closed-form approximate expressions for the uplink achievable rate are derived for both cases of perfect and imperfect channel state information (CSI). With the increasing Rician $K$ -factor, the derived results show that the achievable rate will converge to a fixed value. We also obtain the power-scaling law that the transmit power of each user can be scaled down proportionally to the inverse of the number of base station (BS) antennas for both perfect and imperfect CSI. Moreover, we reveal the tradeoff between the achievable rate and the energy efficiency with respect to key system parameters, including the quantization bits, number of BS antennas, Rician $K$ -factor, user transmit power, and CSI quality. Finally, numerical results are provided to show that the mixed-ADC architecture can achieve a better energy-rate tradeoff compared with the ideal infinite-resolution and low-resolution ADC architectures.
Date of publication 2017
Code Programming Language MATLAB

Copyright Researcher II 2021