PointGrow: Autoregressively Learned Point Cloud Generation with Self-Attention

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Ziwei Liu, Sanjay E. Sarma, Yue Wang, Joshua E. Siegel, Yongbin Sun
Journal/Conference Name arXiv preprint
Paper Category
Paper Abstract Generating 3D point clouds is challenging yet highly desired. This work presents a novel autoregressive model, PointGrow, which can generate diverse and realistic point cloud samples from scratch or conditioned on semantic contexts. This model operates recurrently, with each point sampled according to a conditional distribution given its previously-generated points, allowing inter-point correlations to be well-exploited and 3D shape generative processes to be better interpreted. Since point cloud object shapes are typically encoded by long-range dependencies, we augment our model with dedicated self-attention modules to capture such relations. Extensive evaluations show that PointGrow achieves satisfying performance on both unconditional and conditional point cloud generation tasks, with respect to realism and diversity. Several important applications, such as unsupervised feature learning and shape arithmetic operations, are also demonstrated.
Date of publication 2018
Code Programming Language Python
Comment

Copyright Researcher 2022