Poisson Multi-Bernoulli Mixture Conjugate Prior for Multiple Extended Target Filtering

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Download
Authors K. Granström, Maryam Fatemi, L. Svensson
Journal/Conference Name IEEE Transactions on Aerospace and Electronic Systems
Paper Category
Paper Abstract This paper presents a Poisson multi-Bernoulli mixture (PMBM) conjugate prior for multiple extended object filtering. A Poisson point process is used to describe the existence of yet undetected targets, while a multi-Bernoulli mixture describes the distribution of the targets that have been detected. The prediction and update equations are presented for the standard transition density and measurement likelihood. Both the prediction and the update preserve the PMBM form of the density, and in this sense, the PMBM density is a conjugate prior. However, the unknown data associations lead to an intractably large number of terms in the PMBM density, and approximations are necessary for tractability. A gamma Gaussian inverse Wishart implementation is presented, along with methods to handle the data association problem. A simulation study shows that the extended target PMBM filter performs well in comparison to the extended target $\delta$-generalized labelled multi-Bernoulli and LMB filters. An experiment with Lidar data illustrates the benefit of tracking both detected and undetected targets.
Date of publication 2020
Code Programming Language Multiple
Comment

Copyright Researcher 2021