Potential for low-cost carbon dioxide removal through tropical reforestation

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Jonah Busch, Jens Engelmann, +4 authors Priya Shyamsundar
Journal/Conference Name Nature Climate Change
Paper Category
Paper Abstract Achieving the 1.5–2.0 °C temperature targets of the Paris climate agreement requires not only reducing emissions of greenhouse gases (GHGs) but also increasing removals of GHGs from the atmosphere1,2. Reforestation is a potentially large-scale method for removing CO2 and storing it in the biomass and soils of ecosystems3–8, yet its cost per tonne remains uncertain6,9. Here, we produce spatially disaggregated marginal abatement cost curves for tropical reforestation by simulating the effects of payments for increased CO2 removals on land-cover change in 90 countries. We estimate that removals from tropical reforestation between 2020–2050 could be increased by 5.7 GtCO2 (5.6%) at a carbon price of US $20 CO2–1, or by 15.1 GtCO2 (14.8%) at US$50 tCO2–1. Ten countries comprise 55% of potential low-cost abatement from tropical reforestation. Avoided deforestation offers 7.2–9.6 times as much potential low-cost abatement as reforestation overall (55.1 GtCO2 at US$20 tCO2–1 or 108.3 GtCO2 at US$50 tCO2–1), but reforestation offers more potential low-cost abatement than avoided deforestation at US$20 tCO2–1 in 21 countries, 17 of which are in Africa.There is a growing need to find cost-effective options for greenhouse gas abatement. In this study, spatially disaggregated marginal abatement cost curves are developed to facilitate economic appraisal of tropical reforestation.
Date of publication 2019
Code Programming Language R

Copyright Researcher 2022