Power Line Recognition From Aerial Images With Deep Learning

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Ömer Emre Yetgin, Burak Benligiray, Ömer Nezih Gerek
Journal/Conference Name IEEE Transactions on Aerospace and Electronic Systems
Paper Category
Paper Abstract Avoidance of power lines is an important issue of flight safety. Assistance systems that automatically detect power lines can prevent accidents caused by pilot unawareness. In this study, we propose using convolutional neural networks (CNN) to recognize the presence of power lines in aerial images. Deep CNN architectures such as VGG and ResNet are originally designed to recognize objects in the ImageNet dataset. We show that they are also successful at extracting features that indicate the presence of power lines, which appear as simple, yet subtle structures. Another interesting finding is that pretraining the CNN with the ImageNet dataset improves power line recognition rate significantly. This indicates that the usage of ImageNet pretraining should not be limited to high-level visual tasks, as it also develops general-purpose visual skills that apply to more primitive tasks. To test the proposed methods’ performance, we collected an aerial dataset and made it publicly available. We experimented with training CNNs in an end-to-end fashion, along with extracting features from the intermediate stages of CNNs and feeding them to various classifiers. These experiments were repeated with different architectures and preprocessing methods, resulting in an expansive account of best practices for the usage of CNNs for power line recognition.
Date of publication 2019
Code Programming Language Python

Copyright Researcher 2021