Predictive mapping of forest composition and structure with direct gradient analysis and nearest- neighbor imputation in coastal Oregon, U.S.A.

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Janet L Ohmann, Matthew J. Gregory
Journal/Conference Name Canadian Journal of Forest Research
Paper Category
Paper Abstract Spatially explicit information on the species composition and structure of forest vegetation is needed at broad spatial scales for natural resource policy analysis and ecological research. We present a method for predictive vegetation mapping that applies direct gradient analysis and nearest-neighbor imputation to ascribe detailed ground attributes of vegetation to each pixel in a digital landscape map. The gradient nearest neighbor method integrates vegetation measurements from regional grids of field plots, mapped environmental data, and Landsat Thematic Mapper (TM) imagery. In the Oregon coastal province, species gradients were most strongly associated with regional climate and geographic location, whereas variation in forest structure was best explained by Landsat TM variables. At the regional level, mapped predictions represented the range of variability in the sample data, and predicted area by vegetation type closely matched sample-based estimates. At the site level, mapped predictions maintained the covariance structure among multiple response variables. Prediction accuracy for tree species occurrence and several measures of vegetation structure and composition was good to moderate. Vegetation maps produced with the gradient nearest neighbor method are appropriately used for regional-level planning, policy analysis, and research, not to guide local management decisions.
Date of publication 2002
Code Programming Language R
Comment

Copyright Researcher 2021