Probabilistic Design of Airfoils for Horizontal Axis Wind Turbines

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors R. Pereira, G. de Oliveira, W. A. Timmer, E. Quaeghebeur
Journal/Conference Name Journal of Physics: Conference Series
Paper Category
Paper Abstract We describe a probabilistic approach to design airfoils for wind energy applications. An analytical expression is derived for the probability of perturbations to the operational blade-section angle of attack. It includes the combined influence of wind shear, yaw-misalignment, and turbulence intensity. The theoretical fluctuations in angle of attack are validated against an aero-structural simulation of a 10 MW horizontal axis wind turbine, operating under different inflow conditions. Finally we incorporate the probabilistic approach into a multi-objective airfoil optimization problem, which is solved with a genetic algorithm. The results illustrate the compromise between airfoil performance for a specific angle of attack and robustness of airfoil performance over a large range of angle of attack fluctuations.
Date of publication 2018
Code Programming Language MATLAB
Comment

Copyright Researcher 2022