Productive instability of coral reef fisheries after climate-driven regime shifts

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors James P. W. Robinson, Shaun K. Wilson, Jan Robinson, Calvin Gerry, Juliette Lucas, Cindy Assan, Rodney Govinden, Simon Jennings, Nicholas A. J. Graham
Journal/Conference Name Coral Reefs
Paper Category
Paper Abstract Tropical coastal communities are highly reliant on coral reefs, which provide nutrition and employment for millions of people. Climate-driven coral bleaching events are fundamentally changing coral reef ecosystems and are predicted to reduce productivity of coral reef fish and fisheries, with significant implications for food security and livelihoods. Yet evidence of long-term bleaching impacts on coral reef fishery productivity is lacking. Here, we analyse over 20 years of fish abundance, catch and habitat data to assess long-term impacts of climate-driven coral mass mortality and regime shifts on nearshore artisanal coral reef fisheries in the Seychelles. Contrary to expectations, total catch and mean catch rates were maintained or increased after coral bleaching, consistent with increasing abundance of herbivorous target species in underwater surveys, particularly on macroalgal-dominated reefs. Catch instability increased as habitats followed divergent post-disturbance trajectories and the distribution of target species became more spatially variable, potentially impacting fisher incomes and local market supply chains. Although coral bleaching increased fishery dependence on herbivore species, our results show that climate-impacted reefs can still provide livelihoods and fish protein for coastal communities.
Date of publication 2018
Code Programming Language R

Copyright Researcher 2022