Progressive Transformers for End-to-End Sign Language Production

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Richard Bowden, Ben Saunders, Necati Cihan Camgoz
Journal/Conference Name ECCV 2020 8
Paper Category
Paper Abstract The goal of automatic Sign Language Production (SLP) is to translate spoken language to a continuous stream of sign language video at a level comparable to a human translator. If this was achievable, then it would revolutionise Deaf hearing communications. Previous work on predominantly isolated SLP has shown the need for architectures that are better suited to the continuous domain of full sign sequences. In this paper, we propose Progressive Transformers, a novel architecture that can translate from discrete spoken language sentences to continuous 3D skeleton pose outputs representing sign language. We present two model configurations, an end-to-end network that produces sign direct from text and a stacked network that utilises a gloss intermediary. Our transformer network architecture introduces a counter that enables continuous sequence generation at training and inference. We also provide several data augmentation processes to overcome the problem of drift and improve the performance of SLP models. We propose a back translation evaluation mechanism for SLP, presenting benchmark quantitative results on the challenging RWTH-PHOENIX-Weather-2014T(PHOENIX14T) dataset and setting baselines for future research.
Date of publication 2020
Code Programming Language Unspecified

Copyright Researcher 2022