Progressively Complementarity-Aware Fusion Network for RGB-D Salient Object Detection

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Youfu Li, Hao Chen
Journal/Conference Name CVPR 2018 6
Paper Category
Paper Abstract How to incorporate cross-modal complementarity sufficiently is the cornerstone question for RGB-D salient object detection. Previous works mainly address this issue by simply concatenating multi-modal features or combining unimodal predictions. In this paper, we answer this question from two perspectives: (1) We argue that if the complementary part can be modelled more explicitly, the cross-modal complement is likely to be better captured. To this end, we design a novel complementarity-aware fusion (CA-Fuse) module when adopting the Convolutional Neural Network (CNN). By introducing cross-modal residual functions and complementarity-aware supervisions in each CA-Fuse module, the problem of learning complementary information from the paired modality is explicitly posed as asymptotically approximating the residual function. (2) Exploring the complement across all the levels. By cascading the CA-Fuse module and adding level-wise supervision from deep to shallow densely, the cross-level complement can be selected and combined progressively. The proposed RGB-D fusion network disambiguates both cross-modal and cross-level fusion processes and enables more sufficient fusion results. The experiments on public datasets show the effectiveness of the proposed CA-Fuse module and the RGB-D salient object detection network.
Date of publication 2018
Code Programming Language Unspecified

Copyright Researcher 2022