ProjE: Embedding Projection for Knowledge Graph Completion

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Tim Weninger, Baoxu Shi
Journal/Conference Name 31st AAAI Conference on Artificial Intelligence, AAAI 2017
Paper Category
Paper Abstract With the large volume of new information created every day, determining the validity of information in a knowledge graph and filling in its missing parts are crucial tasks for many researchers and practitioners. To address this challenge, a number of knowledge graph completion methods have been developed using low-dimensional graph embeddings. Although researchers continue to improve these models using an increasingly complex feature space, we show that simple changes in the architecture of the underlying model can outperform state-of-the-art models without the need for complex feature engineering. In this work, we present a shared variable neural network model called ProjE that fills-in missing information in a knowledge graph by learning joint embeddings of the knowledge graph's entities and edges, and through subtle, but important, changes to the standard loss function. In doing so, ProjE has a parameter size that is smaller than 11 out of 15 existing methods while performing $37\%$ better than the current-best method on standard datasets. We also show, via a new fact checking task, that ProjE is capable of accurately determining the veracity of many declarative statements.
Date of publication 2016
Code Programming Language Python

Copyright Researcher 2022