Provable Certificates for Adversarial Examples: Fitting a Ball in the Union of Polytopes

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Justin Lewis, Alexandros G. Dimakis, Matt Jordan
Journal/Conference Name NeurIPS 2019 12
Paper Category
Paper Abstract We propose a novel method for computing exact pointwise robustness of deep neural networks for all convex $\ell_p$ norms. Our algorithm, GeoCert, finds the largest $\ell_p$ ball centered at an input point $x_0$, within which the output class of a given neural network with ReLU nonlinearities remains unchanged. We relate the problem of computing pointwise robustness of these networks to that of computing the maximum norm ball with a fixed center that can be contained in a non-convex polytope. This is a challenging problem in general, however we show that there exists an efficient algorithm to compute this for polyhedral complices. Further we show that piecewise linear neural networks partition the input space into a polyhedral complex. Our algorithm has the ability to almost immediately output a nontrivial lower bound to the pointwise robustness which is iteratively improved until it ultimately becomes tight. We empirically show that our approach generates distance lower bounds that are tighter compared to prior work, under moderate time constraints.
Date of publication 2019
Code Programming Language Python
Comment

Copyright Researcher 2022