Provable Certificates for Adversarial Examples: Fitting a Ball in the Union of Polytopes
View Researcher's Other CodesDisclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).
Please contact us in case of a broken link from here
Authors | Justin Lewis, Alexandros G. Dimakis, Matt Jordan |
Journal/Conference Name | NeurIPS 2019 12 |
Paper Category | Artificial Intelligence |
Paper Abstract | We propose a novel method for computing exact pointwise robustness of deep neural networks for all convex $\ell_p$ norms. Our algorithm, GeoCert, finds the largest $\ell_p$ ball centered at an input point $x_0$, within which the output class of a given neural network with ReLU nonlinearities remains unchanged. We relate the problem of computing pointwise robustness of these networks to that of computing the maximum norm ball with a fixed center that can be contained in a non-convex polytope. This is a challenging problem in general, however we show that there exists an efficient algorithm to compute this for polyhedral complices. Further we show that piecewise linear neural networks partition the input space into a polyhedral complex. Our algorithm has the ability to almost immediately output a nontrivial lower bound to the pointwise robustness which is iteratively improved until it ultimately becomes tight. We empirically show that our approach generates distance lower bounds that are tighter compared to prior work, under moderate time constraints. |
Date of publication | 2019 |
Code Programming Language | Python |
Comment |