Pyramid Feature Attention Network for Saliency detection

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Download
Authors Ting Zhao, Xiangqian Wu
Journal/Conference Name CVPR 2019 6
Paper Category
Paper Abstract Saliency detection is one of the basic challenges in computer vision. How to extract effective features is a critical point for saliency detection. Recent methods mainly adopt integrating multi-scale convolutional features indiscriminately. However, not all features are useful for saliency detection and some even cause interferences. To solve this problem, we propose Pyramid Feature Attention network to focus on effective high-level context features and low-level spatial structural features. First, we design Context-aware Pyramid Feature Extraction (CPFE) module for multi-scale high-level feature maps to capture rich context features. Second, we adopt channel-wise attention (CA) after CPFE feature maps and spatial attention (SA) after low-level feature maps, then fuse outputs of CA & SA together. Finally, we propose an edge preservation loss to guide network to learn more detailed information in boundary localization. Extensive evaluations on five benchmark datasets demonstrate that the proposed method outperforms the state-of-the-art approaches under different evaluation metrics.
Date of publication 2019
Code Programming Language Multiple
Comment

Copyright Researcher 2022