Query-by-Example Search with Discriminative Neural Acoustic Word Embeddings

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Herman Kamper, Keith Levin, Karen Livescu, Shane Settle
Journal/Conference Name Interspeech 2017
Paper Category
Paper Abstract Query-by-example search often uses dynamic time warping (DTW) for comparing queries and proposed matching segments. Recent work has shown that comparing speech segments by representing them as fixed-dimensional vectors --- acoustic word embeddings --- and measuring their vector distance (e.g., cosine distance) can discriminate between words more accurately than DTW-based approaches. We consider an approach to query-by-example search that embeds both the query and database segments according to a neural model, followed by nearest-neighbor search to find the matching segments. Earlier work on embedding-based query-by-example, using template-based acoustic word embeddings, achieved competitive performance. We find that our embeddings, based on recurrent neural networks trained to optimize word discrimination, achieve substantial improvements in performance and run-time efficiency over the previous approaches.
Date of publication 2017
Code Programming Language Shell
Comment

Copyright Researcher 2022