Re-initialization Free Level Set Evolution via Reaction Diffusion

View Researcher's Other Codes

MATLAB code for the paper: “Re-initialization Free Level Set Evolution via Reaction Diffusion”.

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Kaihua Zhang, Lei Zhang , Huihui Song and David Zhang
Journal/Conference Name IEEE Transactions on Image Processing
Paper Category
Paper Abstract This paper presents a novel reaction-diffusion (RD) method for implicit active contours, which is completely free of the costly re-initialization procedure in level set evolution (LSE). A diffusion term is introduced into LSE, resulting in a RD-LSE equation, to which a piecewise constant solution can be derived. In order to have a stable numerical solution of the RD based LSE, we propose a two-step splitting method (TSSM) to iteratively solve the RD-LSE equation: first iterating the LSE equation, and then solving the diffusion equation. The second step regularizes the level set function obtained in the first step to ensure stability, and thus the complex and costly re-initialization procedure is completely eliminated from LSE. By successfully applying diffusion to LSE, the RD-LSE model is stable by means of the simple finite difference method, which is very easy to implement. The proposed RD method can be generalized to solve the LSE for both variational level set method and PDE-based level set method. The RD-LSE method shows very good performance on boundary anti-leakage, and it can be readily extended to high dimensional level set method. The extensive and promising experimental results on synthetic and real images validate the effectiveness of the proposed RD-LSE approach.
Date of publication 2013
Code Programming Language MATLAB
Comment

Copyright Researcher 2021