Real-time Object Tracking via Online Discriminative Feature Selection

View Researcher's Other Codes

MATLAB code for the paper: “Real-time Object Tracking via Online Discriminative Feature Selection”.

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Kaihua Zhang, Lei Zhang, and Ming-Hsuan Yang
Journal/Conference Name IEEE Transactions on Image Processing
Paper Category
Paper Abstract Most tracking-by-detection algorithms train discriminative classifiers to separate target objects from their surrounding background. In this setting, noisy samples are likely to be included when they are not properly sampled, thereby causing visual drift. The multiple instance learning (MIL) learning paradigm has been recently applied to alleviate this problem. However, important prior information of instance labels and the most correct positive instance (i.e., the tracking result in the current frame) can be exploited using a novel formulation much simpler than an MIL approach. In this paper, we show that integrating such prior information into a supervised learning algorithm can handle visual drift more effectively and efficiently than the existing MIL tracker. We present an online discriminative features election algorithm which optimizes the objective function in the steepest ascent direction with respect to the positive samples while in the steepest descent direction with respect to the negative ones. Therefore, the trained classifier directly couples its score with the importance of samples, leading to a more robust and efficient tracker. Numerous experimental evaluations with state-of-the-art algorithms on challenging sequences demonstrate the merits of the proposed algorithm
Date of publication 2013
Code Programming Language MATLAB
Comment

Copyright Researcher 2021