Recurrent CNN for 3D Gaze Estimation using Appearance and Shape Cues

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Cristina Palmero, Mohammad Ali Bagheri, Sergio Escalera, Javier Selva
Journal/Conference Name British Machine Vision Conference 2018, BMVC 2018
Paper Category
Paper Abstract Gaze behavior is an important non-verbal cue in social signal processing and human-computer interaction. In this paper, we tackle the problem of person- and head pose-independent 3D gaze estimation from remote cameras, using a multi-modal recurrent convolutional neural network (CNN). We propose to combine face, eyes region, and face landmarks as individual streams in a CNN to estimate gaze in still images. Then, we exploit the dynamic nature of gaze by feeding the learned features of all the frames in a sequence to a many-to-one recurrent module that predicts the 3D gaze vector of the last frame. Our multi-modal static solution is evaluated on a wide range of head poses and gaze directions, achieving a significant improvement of 14.6% over the state of the art on EYEDIAP dataset, further improved by 4% when the temporal modality is included.
Date of publication 2018
Code Programming Language Multiple

Copyright Researcher 2022