Regular and Irregular Progressive Edge-Growth Tanner Graphs

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Xiao-Yu Hu, E. Eleftheriou, D. Arnold
Journal/Conference Name I
Paper Category
Paper Abstract We propose a general method for constructing Tanner graphs having a large girth by establishing edges or connections between symbol and check nodes in an edge-by-edge manner, called progressive edge-growth (PEG) algorithm. Lower bounds on the girth of PEG Tanner graphs and on the minimum distance of the resulting low-density parity-check (LDPC) codes are derived in terms of parameters of the graphs. Simple variations of the PEG algorithm can also be applied to generate linear-time encodeable LDPC codes. Regular and irregular LDPC codes using PEG Tanner graphs and allowing symbol nodes to take values over GF(q) (q>2) are investigated. Simulation results show that the PEG algorithm is a powerful algorithm to generate good short-block-length LDPC codes.
Date of publication 2005
Code Programming Language JavaScript
Comment

Copyright Researcher 2022