Relationship between Greenland Ice Sheet surface speed and modeled effective pressure

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Laura A. Stevens, Ian J. Hewitt, Sarah B. Das, Mark D. Behn
Journal/Conference Name Journal of Geophysical Research
Paper Category
Paper Abstract We use a numerical subglacial hydrology model and remotely sensed observations of Greenland Ice Sheet surface motion to test whether the inverse relationship between effective pressure and regional melt season surface speeds observed at individual sites holds on a regional scale. The model is forced with daily surface runoff estimates for 2009 and 2010 across an ~8,000-km2 region on the western margin. The overall subglacial drainage system morphology develops similarly in both years, with subglacial channel networks growing inland from the ice sheet margin and robust subglacial pathways forming over bedrock ridges. Modeled effective pressures are compared to contemporaneous regional surface speeds derived from TerraSAR-X imagery to investigate spatial relationships. Our results show an inverse spatial relationship between effective pressure and ice speed in the mid-melt season, when surface speeds are elevated, indicating that effective pressure is the dominant control on surface velocities in the mid-melt season. By contrast, in the early and late melt seasons, when surface speeds are slower, effective pressure and surface speed have a positive relationship. Our results suggest that outside of the mid-melt season, the influence of effective pressures on sliding speeds may be secondary to the influence of driving stress and spatially variable bed roughness.
Date of publication 2018
Code Programming Language Matlab
Comment

Copyright Researcher 2022