Revisiting the Inverted Indices for Billion-Scale Approximate Nearest Neighbors

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Dmitry Baranchuk, Artem Babenko, Yury Malkov
Journal/Conference Name ECCV 2018 9
Paper Category
Paper Abstract This work addresses the problem of billion-scale nearest neighbor search. The state-of-the-art retrieval systems for billion-scale databases are currently based on the inverted multi-index, the recently proposed generalization of the inverted index structure. The multi-index provides a very fine-grained partition of the feature space that allows extracting concise and accurate short-lists of candidates for the search queries. In this paper, we argue that the potential of the simple inverted index was not fully exploited in previous works and advocate its usage both for the highly-entangled deep descriptors and relatively disentangled SIFT descriptors. We introduce a new retrieval system that is based on the inverted index and outperforms the multi-index by a large margin for the same memory consumption and construction complexity. For example, our system achieves the state-of-the-art recall rates several times faster on the dataset of one billion deep descriptors compared to the efficient implementation of the inverted multi-index from the FAISS library.
Date of publication 2018
Code Programming Language Multiple

Copyright Researcher 2022