Road crack detection using deep convolutional neural network

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Lei Zhang, Fan Yang, Yimin Daniel Zhang, Ying Julie Zhu
Journal/Conference Name 2016 IEEE International Conference on Image Processing (ICIP)
Paper Category
Paper Abstract Automatic detection of pavement cracks is an important task in transportation maintenance for driving safety assurance. However, it remains a challenging task due to the intensity inhomogeneity of cracks and complexity of the background, e.g., the low contrast with surrounding pavement and possible shadows with similar intensity. Inspired by recent success on applying deep learning to computer vision and medical problems, a deep-learning based method for crack detection is proposed in this paper. A supervised deep convolutional neural network is trained to classify each image patch in the collected images. Quantitative evaluation conducted on a data set of 500 images of size 3264 χ 2448, collected by a low-cost smart phone, demonstrates that the learned deep features with the proposed deep learning framework provide superior crack detection performance when compared with features extracted with existing hand-craft methods.
Date of publication 2016
Code Programming Language Python
Comment

Copyright Researcher 2022