Robust Gyroscope-Aided Camera Self-Calibration

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Santiago Cort├ęs Reina, Arno Solin, Juho Kannala
Journal/Conference Name 2018 21st International Conference on Information Fusion, FUSION 2018
Paper Category
Paper Abstract Camera calibration for estimating the intrinsic parameters and lens distortion is a prerequisite for various monocular vision applications including feature tracking and video stabilization. This application paper proposes a model for estimating the parameters on the fly by fusing gyroscope and camera data, both readily available in modern day smartphones. The model is based on joint estimation of visual feature positions, camera parameters, and the camera pose, the movement of which is assumed to follow the movement predicted by the gyroscope. Our model assumes the camera movement to be free, but continuous and differentiable, and individual features are assumed to stay stationary. The estimation is performed online using an extended Kalman filter, and it is shown to outperform existing methods in robustness and insensitivity to initialization. We demonstrate the method using simulated data and empirical data from an iPad.
Date of publication 2018
Code Programming Language Matlab
Comment

Copyright Researcher 2022