Robust improper maximum likelihood: tuning, computation, and a comparison with other methods for robust Gaussian clustering

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Pietro Coretto, Christian Hennig
Journal/Conference Name Journal of the American Statistical Association
Paper Category
Paper Abstract ABSTRACTThe two main topics of this article are the introduction of the “optimally tuned robust improper maximum likelihood estimator” (OTRIMLE) for robust clustering based on the multivariate Gaussian model for clusters, and a comprehensive simulation study comparing the OTRIMLE to maximum likelihood in Gaussian mixtures with and without noise component, mixtures of t-distributions, and the TCLUST approach for trimmed clustering. The OTRIMLE uses an improper constant density for modeling outliers and noise. This can be chosen optimally so that the nonnoise part of the data looks as close to a Gaussian mixture as possible. Some deviation from Gaussianity can be traded in for lowering the estimated noise proportion. Covariance matrix constraints and computation of the OTRIMLE are also treated. In the simulation study, all methods are confronted with setups in which their model assumptions are not exactly fulfilled, and to evaluate the experiments in a standardized way by misclassification rates, a new mode...
Date of publication 2016
Code Programming Language R
Comment

Copyright Researcher 2021