Robust Object Tracking via Sparsity-based Collaborative Model

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Wei Zhong, Huchuan Lu, Ming-Hsuan Yang
Journal/Conference Name IEEE Conference on Computer Vision and Pattern…
Paper Category
Paper Abstract In this paper we propose a robust object tracking algorithm using a collaborative model. As the main challenge for object tracking is to account for drastic appearance change, we propose a robust appearance model that exploits both holistic templates and local representations. We develop a sparsity-based discriminative classifier (SD-C) and a sparsity-based generative model (SGM). In the S-DC module, we introduce an effective method to compute the confidence value that assigns more weights to the foreground than the background. In the SGM module, we propose a novel histogram-based method that takes the spatial information of each patch into consideration with an occlusion handing scheme. Furthermore, the update scheme considers both the latest observations and the original template, thereby enabling the tracker to deal with appearance change effectively and alleviate the drift problem. Numerous experiments on various challenging videos demonstrate that the proposed tracker performs favorably against several state-of-the-art algorithms.
Date of publication 2012
Code Programming Language MATLAB
Comment

Copyright Researcher 2021