Robust Online Matrix Factorization for Dynamic Background Subtraction

View Researcher's Other Codes

MATLAB code for the following paper: “Robust Online Matrix Factorization for Dynamic Background Subtraction”.

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors H. Yong, D. Meng, W. Zuo, L. Zhang
Journal/Conference Name IEEE Transactions on Pattern Analysis and Machine Intelligence
Paper Category
Paper Abstract We propose an effective online background subtraction method, which can be robustly applied to practical videos that have variations in both foreground and background. Different from previous methods which often model the foreground as Gaussian or Laplacian distributions, we model the foreground for each frame with a specific mixture of Gaussians (MoG) distribution, which is updated online frame by frame. Particularly, our MoG model in each frame is regularized by the learned foreground/background knowledge in previous frames. This makes our online MoG model highly robust, stable and adaptive to practical foreground and background variations. The proposed model can be formulated as a concise probabilistic MAP model, which can be readily solved by EM algorithm. We further embed an affine transformation operator into the proposed model, which can be automatically adjusted to fit a wide range of video background transformations and make the method more robust to camera movements. With using the sub-sampling technique, the proposed method can be accelerated to execute more than 250 frames per second on average, meeting the requirement of real-time background subtraction for practical video processing tasks. The superiority of the proposed method is substantiated by extensive experiments implemented on synthetic and real videos, as compared with state-of-the-art online and offline background subtraction methods.
Date of publication 2018
Code Programming Language MATLAB
Comment

Copyright Researcher 2021