RQGIS: Integrating R with QGIS for Statistical Geocomputing

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Jannes Muenchow, Patrick Schratz, Alexander Brenning
Journal/Conference Name The R Journal
Paper Category
Paper Abstract Integrating R with Geographic Information Systems (GIS) extends R’s statistical capabilities with numerous geoprocessing and data handling tools available in a GIS. QGIS is one of the most popular open-source GIS, and it furthermore integrates other GIS programs such as the System for Automated Geoscientific Analyses (SAGA) GIS and the Geographic Resources Analysis Support System (GRASS) GIS within a single software environment. This and its QGIS Python API makes it a perfect candidate for console-based geoprocessing. By establishing an interface, the R package RQGIS makes it possible to use QGIS as a geoprocessing workhorse from within R. Compared to other packages building a bridge to GIS (e.g., rgrass7, RSAGA, RPyGeo), RQGIS offers a wider range of geoalgorithms, and is often easier to use due to various convenience functions. Finally, RQGIS supports the seamless integration of Python code using reticulate from within R for improved extendability.
Date of publication 2017
Code Programming Language R
Comment

Copyright Researcher 2022