SCORPIUS improves trajectory inference and identifies novel modules in dendritic cell development

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Robrecht Cannoodt, Wouter Saelens, +6 authors Yvan Saeys
Journal/Conference Name bioRxiv
Paper Category
Paper Abstract Recent advances in RNA sequencing enable the generation of genome-wide expression data at the single-cell level, opening up new avenues for transcriptomics and systems biology. A new application of single-cell whole-transcriptomics is the unbiased ordering of cells according to their progression along a dynamic process of interest. We introduce SCORPIUS, a method which can effectively reconstruct an ordering of individual cells without any prior information about the dynamic process. Comprehensive evaluation using ten scRNA-seq datasets shows that SCORPIUS consistently outperforms state-of-the-art techniques. We used SCORPIUS to generate novel hypotheses regarding dendritic cell development, which were subsequently validated in vivo. This work enables data-driven investigation and characterization of dynamic processes and lays the foundation for objective benchmarking of future trajectory inference methods.
Date of publication 2016
Code Programming Language R
Comment

Copyright Researcher 2021